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Abstract

We extend a formula proposed by Kenmotsu et al. (hereafter Paper I), which fits with the energy spectrum of atoms

sputtered from a heavy material hit by low-energy light ions (H+, D+, T+, He+) by taking into account an inelastic

energy loss neglected in Paper I. We assume that primary knock-on atoms produced by ions backscattered at large

angles do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in

Paper I. The extended formula is expressed in terms of a normalized energy-distribution function and is compared with

the data calculated with the ACAT code for 50 eV, 100 eV and 1 keV D+ ions impinging on a Fe target. Our formula fits

well with the data in a wide range of incident energy.
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1. Introduction

The energy distribution function of atoms sputtered

from the divertor plate and the first wall of a fusion de-

vice is indispensable in the analysis of the impurity

transport in a scrape-off layer. The Thompson formula

[1] has been used widely for this purpose. It assumes that

sputtered atoms originate in a well-developed collision

cascade created only by heavy ions in a material. How-

ever, an experiment [2] shows that the energy spectrum

due to low-energy light ions differs from that calculated

with the formula. This deviation can be understood
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from the fact that light ions cannot produce such a cas-

cade, but rather a single or multiple collision sequence.

Considering that an elastic energy loss is greater than

an inelastic one for ions with energy of about a few hun-

dred eV, we derived a formula for the energy spectrum

of sputtered atoms due to light ions (H+, D+, T+, He+)

by assuming that the primary knock-on atoms created

near the surface with large-angle backscattered ions

are the main candidates for ejection and by neglecting

inelastic energy loss in Paper I [3]. In what follows, we

derive an extended formula which can be applied to an

energy region ranging from several tens of eV to keV,

by considering both elastic and inelastic energy losses.

We assume that primary knock-on atoms do not lose

energy while penetrating a material up to the surface

[4]. The extended formula is expressed in terms of a
ed.
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normalized energy distribution function and is com-

pared with the data calculated with a Monte Carlo code

ACAT [5], the Thompson and other formulas for 50 eV,

100 eV and 1 keV D+ ions impinging on a Fe target.
2. Model

In this paper, we treat sputtering of heavy materials

with light ions with incident energy ranging from several

tens of eV to a few keV. We use the same sputtering

mechanism as in Paper I. We introduce a primary recoil

density Fp(E,E0) in the way that Fp(E,E0)dE0 is the

average number of primary recoil atoms created with en-

ergy E0 in a collision cascade or sequence initiated by a

light ion with initial energy E. For a collision between a

light ion and a heavy target atom, from Eqs. (1) and (2)

of Paper I, the integral equation for FP(E,E0) can be re-

duced to the following equation [3,6]:

Z
drðE; T Þ T

o

oE
F pðE;E0Þ

� �
þ SeðEÞ

o

oE
F pðE;E0Þ

¼ drðE;E0Þ
dE0

; ð1Þ

where T is the energy of a recoil atom after a collision

governed by a differential cross section dr, Se(E) is an

electronic stopping cross section. According to Lindhard

et al. [7], dr is defined in reduced notation as

dr ¼ pa2

2

f ðt1=2Þ
t3=2

dt; ð2Þ

with

t � e2
T

Tmax

; ð3Þ

where

Tmax ¼ cE; ð4Þ

with c � 4M1M2/(M1 +M2)
2, M1 and M2 are the masses

of an incident ion and a target atom, e is the dimension-

less reduced energy defined as

e � a
Z1Z2e2

� �
M2E

M1 þM2

� �
; ð5Þ

where Z1 and Z2 are their atomic numbers: e is the unit

charge: a ¼ 0:04685ðZ2=3
1 þ Z2=3

2 Þ�1=2
nm is the Thomas–

Fermi screening length: f(t1/2) is a scattering function de-

fined by

f ðt1=2Þ ¼ kt1=2�mð1þ ð2kt1�mÞqÞ�1=q; ð6Þ

where m, k and q are fitting variables for interatomic

potentials. A data set of (m,k,q) = (0.25,2.54,0.475)

was derived in the range 10�5
6 t1/2 6 10 [8]. We

approximate the right-hand side of Eq. (6) with above

data set with an accuracy of 30% by a simple function
f ðt1=2Þ ¼ kmt1=2�m: ð7Þ

Then, we have m = 1/4 and k1/4 = 2.54 for 10�5
6 t1/2

6 1.18 · 10�2 referred to as region (I) and m = 1/2 and

k1/2 = 0.276 for 1.18 · 10�2
6 t1/2 < 1.11 referred to as

region (II). Substituting Eqs. (3) and (4) for Eq. (2),

one reaches

drðE; T Þ ¼ CmE�mT�1�m dT ; ð8Þ

with Cm = pkma
2(M1/M2)

m(2Z1Z2e
2/a)2m/2. In the en-

ergy range concerned here, Se(E) is given as

SeðEÞ ¼ KLE1=2; ð9Þ

with KL ¼ 1:216� 10�2Z7=6
1 Z2=M

1=2
1 ðZ2=3

1 þ Z2=3
2 Þ3=2 eV1/2

nm2 [9]. Substituting Eqs. (8) and (9) for Eq. (1) results

in

CmE�m

Z T 1

0

T�m dT þ KLE1=2

� �
o

oE
F pðE;E0Þ

¼ CmE
�mE�1�m

0 ; ð10Þ

where T1 is the maximum energy of a recoil atom trans-

ferred from a colliding atom. As cited above, an ion is

backscattered at a large angle first by a target atom

and then knocks-off a target atom near the surface,

mostly in the top layer, on its way out [10]. Thus, we

set T1 = cEback, where Eback is the energy of a backscat-

tered ion. Eback varies with the position of an ion, since it

loses energy while moving along its trajectory in a mate-

rial. However, in this work, we set Eback = (1 � c)Einc for

simplicity, where Einc is the incident energy of an ion.

Then, we finally take T1 = c(1 � c)Einc. By setting

E = Eback in Eqs. (4) and (5), from Eq. (3), the regions

(I) and (II) for f(t1/2) are reduced to (I)

10�5
6 eT 1=2=T 1=2

max 6 1:18� 10�2 and 1:18� 10�2
6

eT 1=2=T 1=2
max 6 1:11 for a collision between a backscat-

tered ion and a target atom. Then, from Eq. (10), one

obtains

oF pðE;E0Þ
oE

¼ AE�5=4
0 E�3=4; ð11–IÞ

where A = C1/4/(4C1/4(c(1 � c))3/4/3 + KL) with C1/4 =

pk1/4a
2(M1/M2)

1/4(2Z1Z2e
2/a)1/2/2 for region (I), and

oF pðE;E0Þ
oE

¼ C1=2E
�3=2
0 E�1=2

2C1=2ðcð1� cÞÞ1=2 þ KLE1=2
; ð11–IIÞ

with C1/2 = pk1/2a
2(M1/M2)

1/2(2Z1Z2e
2/a)/2 for region

(II). In obtaining Eq. (11), the lower limit of the integra-

tion over T is extended to zero for simplicity, which,

however, does not influence the result. In deriving Eq.

(11–II), we ignore the integration value in region (I),

since it is smaller than that in region (II). Since the

second term becomes larger than the first one in the

denominator of Eq. (11–II) for eT 1=2=T 1=2
max P 1:11 and

since f(t1/2) given by Eq. (6) with the above data set

decreases sharply there, we can use the right-hand side
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of Eq. (11–II) for approximation to oFp(E,E0)/oE even

beyond the upper limit of region (II). The lower limit

of the integral of the derivative (11), Emin, is the mini-

mum energy of a backscattered ion. We use the same

physical hypothesis in estimating E0 from Emin as that

employed above to calculate T1 from Einc, i.e.,

c(1 � c)Emin = E0. Thus, we can set Emin = E0/c(1 � c).
The upper limit of the integration over E is clearly Einc.

From a physical reason for Fp(E,E0), it is clear that

Fp(E,E0) = 0 for E0 P E. Under this condition, we can

obtain Fp(E,E0) by integrating Eq. (11) for regions (I)

and (II).

The double differential sputtering yield is expressed

as [4]

JðE1; e1Þ ¼
Z cð1�cÞEinc

U
dE0

Z 1

0

dx

�
Z

d2e0F̂ ðEinc; e;E0; e0; xÞP ðE0; e; x;E1; e1Þ;

ð12Þ

where E1 and e1 are the energy and the direction of a

sputtered atom: F̂ dxdE0d
2e0 is the average number of

primary knock-on atoms created at a depth x from the

surface and with energy E0 into a solid angle e0, by an

incident ion with initial energy Einc and direction e:
PdE1d

2e1 is the probability that a recoil atom with

(E0,e0,x) is ejected from the surface with energy E1 into

a solid angle e1 without undergoing collisions. Atoms

are ejected if they overcome the surface potential U.

By assuming a planar barrier and considering the refrac-

tion at the surface, one has [4]

P ðE0; e0; x;E1; e1Þ
¼ dðE1 þU �E0Þ exp½�x=L cosh0�dðu1 �u0Þ
� dðcosh1 � ½ð1þU=E1Þcos2h0 �U=E1�1=2Þ; ð13Þ

where h0 and /0 are the polar angle and azimuth belong-

ing to e0 with respect to the surface normal, whereas h1
and /1 are the corresponding quantities belonging to

e1:d is the Dirac delta function: L is the collision mean

free path [4]. As discussed in Paper I, almost all light

ions at near-normal incidence are subject to randomiza-

tion because they are backscattered near 180� by target

atoms, and primary recoil atoms produced then by those

ions are nearly isotropic [3,11]. Then we can assume

F̂ ðEinc; e;E0; e0; xÞ � F̂ ðEinc;E0; xÞ=4p. That almost all

of the sputtered atoms are created near the surface is a

fairy good approximation for sputtering of a heavy tar-

get material with light ions. Thus, we can also assume

F̂ ðEinc;E0; xÞ � F̂ ðEinc;E0; 0Þ � F pðEinc;E0Þ in the inte-

grand of Eq. (12). Using Eq. (13), one obtains for re-

gions (I) and (II), respectively,

JðE1; e1Þ ¼ AL cos h1E1=pðE1 þ UÞ9=4

� bðcð1� cÞEincÞ1=4 � ðE1 þ UÞ1=4c; ð14–IÞ
JðE1,e1Þ ¼ BL cosh1E1=pðcð1� cÞÞ1=2ðE1 þUÞ5=2

� ln½ðBþE1=2
inc Þ=ðBþ ðE1 þUÞ1=2=ðcð1� cÞÞ1=2Þ�,

ð14–IIÞ

where B = 2C1/2(c(1 � c))1/2/KL. Integrating Eq. (14)

over e1 yields a differential sputtering yield in energy.

We introduce a normalized energy distribution function

of sputtered atoms, i.e., a normalized yield, YN(Einc,E1),

defined by a differential sputtering yield in energy di-

vided by its sputtering yield. Then, YN(Einc,E1) can be

expressed for regions (I) and (II), respectively, as

Y N ðEinc,E1Þ ¼ NðEincÞE1ðE1 þ UÞ�9=4

� bðcð1� cÞEincÞ1=4 � ðE1 þ UÞ1=4c, ð15–IÞ

Y N ðEinc,E1Þ ¼ NðEincÞE1ðE1 þUÞ�5=2 � ln½ðBþE1=2
inc Þ

=ðBþ ðE1 þUÞ1=2=ðcð1� cÞÞ1=2Þ�, ð15–IIÞ

where N(Einc) is a normalization factor. N(Einc) is cer-

tainly dependent on a combination of projectile ion spe-

cies and a target atom. It is noteworthy that the present

formula (15) depends on incident ion energy Einc.
3. Results and discussions

We refer to sputtering yield data calculated with the

ACAT code. In Figs. 1–3, we compare our results with

the ACAT data for a Fe material irradiated by D+ ions

at normal incidence with incident energy of 50 eV,

100 eV and 1 keV. For these conditions, T1 enters into

region (II). Thus, we have used Eq. (15–II) to calculate

YN(Einc,E1). Kenmotsu [3], Thompson [1] and Falcone

[4] formulas are also referred to for comparison, where

each spectrum is normalized to give a sputtered energy

distribution function as discussed above. We have nor-

malized the truncated Thompson formula (which in-

cludes a cut-off factor) and the conventionally used

untruncated Thompson formula (which does not have

a cut-off factor), by setting the maximum of sputtered

energy at cEinc � U. Fig. 1 shows that our present for-

mula and Kenmotsu�s formula fit with the calculated

data for 50 eV D+ ions, although there is a difference be-

tween the data and our present formula at about

E1 = 0.5 eV. In contrast to these formulas, both Thomp-

son formulas and the Falcone formula differ clearly

from the ACAT data and have large tails even in the

higher energy range where there are no ACAT data.

In Fig. 2, our formula fits quite well with the ACAT

data, and reasonable agreement is also seen for the

Kenmotsu, the Falcone and the truncated Thompson

formulas. On the other hand, the untruncated Thompson

formula differs clearly from the ACAT data and has

again a large tail in the higher energy range. Fig. 3 shows

that the peak value of the ACAT data differs from

the present formula, the Falcone and the untruncated



Fig. 1. Normalized yields of atoms sputtered from a Fe

material irradiated by 50 eV D+ ions at normal incidence vs.

sputtered atom energy in eV. The legend shows the curves

obtained with the different formulas. The closed circles are the

data calculated with the ACAT code. Note that the truncated

Thompson and the Falcone curves completely overlap.

Fig. 2. Normalized yields of atoms sputtered from a Fe

material irradiated by 100 eV D+ ions at normal incidence vs.

sputtered atom energy in eV. Refer to Fig. 1 for legend.

Fig. 3. Normalized yields of atoms sputtered from a Fe

material irradiated by 1 keV D+ ions at normal incidence vs.

sputtered atom energy in eV. Refer to Fig. 1 for legend.
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Thompson formulas by about 30% for 1 keV D+ ions.

However, except for this discrepancy, they represent

the spectrum well, whereas the Kenmotsu formula has

a much smaller value at its maximum. Fig. 3 also shows

that the truncated Thompson formula matches the

ACAT data very well. In the 1–5 keV energy range of

D+ ions (not shown here), our present formula, the Fal-

cone, and both Thompson formulas agree well with the
ACAT data, except for the discrepancy at the peaks of

the ACAT data.
4. Conclusions

To represent the energy distribution of atoms sput-

tered from a heavy material irradiated by light ions with

a wide range of energy, we have extended a formula pre-

sented in Paper I, by considering inelastic and elastic

energy losses and by keeping the same sputtering

mechanism as before. However, we have assumed that

primary knock-on atoms produced by backscattered

ions do not lose energy while penetrating the material

up to the surface, instead of the energy-loss model used

in Paper I. We have expressed our formula in terms of a

normalized energy distribution function and have com-

pared it with the ACAT data for 50 eV, 100 eV and

1 keV D+ ions impinging on a Fe material. The agree-

ment is very good for 100 eV. It is also good for 50 eV

and 1 keV except for some differences near the peaks

of the spectra. We have shown that there are consider-

able differences between the truncated Thompson for-

mula and untruncated Thompson formula for 50 eV

and 100 eV. Our present formula agrees well with the

ACAT data for incident light ions (H+, D+, T+, He+)

with energy ranging from several tens of eV to about

2 keV and for heavy target materials, although the cor-

responding results have not been shown in this work.
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